Infrared Spectroscopy of H, in MOFs

1) More than just a characterization technique
2) Experimental probe of H,---MOF interactions
3) Requires some specialized equipment

4) Storage, guantum sieving, catalysis

5) CO,, CH,, N, other gases



Infrared Spectroscopy! Are you crazy?
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Infrared Spectroscopy! Are you crazy?

H H The atoms are neutral

No Dipole moment

Interactions with MOF can
polarize H,
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H, polarizability is almost isotropic
Mostly activates pure vibrational transitions



H, Quadrupole Mechanism

H, quadrupole moment can
polarize MOF atoms
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Quadrupole moment highly anisotropic
Vibrations and Ro-vibrations are activated

Hydrogen polarizes MOF atoms




Diffuse Reflectance Infrared Spectroscopy
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1) Long effective optical path length

2) Powder sample require no processing

3) Typically use 10 mg of powder

4) Sample chamber can be quite small



Diffuse Reflectance Spectroscopy: Cryostat Assembly
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Samples are mounted in a glove-box







Quantum Dynamics of Adsorbed H,

 Vibration <= >
E, =(v+1/2) vy ONMO

V0 = 4161 cm* for free H,

» Rotation d ‘ i ‘I \
E;j=1J (J +1) Bo . v
Bo =59 cm for free H, :

e Translation

Center-of-mass ﬂ -
On the order of 100 cm™? “




Spectroscopic notation of possible transitions

J=2—a—

« Pure Vibrational modes called 3=1
Q transitions AJ =0 V1) =0 = mm - —--f

 Q(0)and Q(1) are very close In
energy ~ 6 cm™ apart

 Rotational Sidebands called
S Transitions AJ = 2

Para H, Ortho H,



Typical Spectra for H, in MOFs at 30 K
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Vibrational Redshift as a Function of Binding Energy
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Temperature Dependent Spectra Co-MOF-74
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Absorbance

Spectra as a function of concentration (Mg- MOF 74 at 35 K)

J. Am. Chem Soc 2011,133, 20310
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Quantum Dynamics of Adsorbed H,

 Vibration <= >
E, =(v+1/2) vy ONMO

V0 = 4161 cm* for free H,

» Rotation d ‘ i ‘I \
E;j=1J (J +1) Bo . v
Bo =59 cm for free H, :

e Translation
Center-of-mass
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Translational mode energy (quantum sieving?)

1 1 1 1 I 1 1 :'I 1 I 1 1 1
J\L Ni-MOF-74 1 /\/K
Co-MOF-74 1! f .

Zn-MOF-74 T i

Mn-MOF-74 f/k M

Absorbance

MOF-5
HKUST-1 X
1 1 1 1 | 1 1 1 1 | 1 1 1
4000 4100 4200

Frequency [cm":-



Back of the Envelope Calculation
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Standard Separation Techniques
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Selectivity vs Translational Frequency
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H, and D, Mixtures in Mg-MOF-74
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H, and D, Mixtures (After sitting at room temperature)
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Mass Spectroscopy HD formation at room temperature
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Mass Spectroscopy HD formation at room temperature
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Mass Spectroscopy HD formation at room temperature
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H, and D, Mixtures (After sitting at room temperature)

Intensity
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Deuterium in MOF-5

Pan)
Pure MOF-5 = 2
§ Fundamental
-
MOF-5with D, ==— — . [ . .
2920 2960] | ]3000 I3040l l
Frequency (cm'1)
U DL T L AL
> . _
o
.(7) 1
-
2 Overtone
cC L "
i .|...".|....|_

5800 5900 6000
-1
Frequency (cm )



Frequency Shift Fundamental versus Overtone
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ABSTRACT: In order for hydrogen gas to be used as a fuel, it must
be stored in sufficient quantity on board the vehicle. Efforts are being
made to increase the hydrogen storage capabilities of metal—organic
frameworks (MOFs) by introducing unsaturated metal sites into their
linking element(s), as hydrogen adsorption centers. In order to devise
successful hydrogen storage strategies there is a need for a
fundamental understanding of the weak and elusive hydrogen
physisorption interaction. Here we report our findings from the
investigation of the weak intermolecular interactions of adsorbed
hydrogen molecules on MOF-linkers by using cluster models. Since
physical interactions such as dispersion and polarization have a major
contribution to attraction energy, our approach is to analyze the
adsorption interaction using energy decomposition analysis (EDA)

H, Physisorption

Polarization

-

Dispersion
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that distinguishes the contribution of the physical interactions from the charge-transfer (CT) “chemical” interaction. Surprisingly,
it is found that CT from the adsorbent to the ¢*(H,) orbital is present in all studied complexes and can contribute up to
approximately —2 kJ/mol to the interaction. When metal ions are present, donation from the o{H,) — metal Rydberg-like
orbital, along with the adsorbent — ¢*(H,) contribution, can contribute from —2 to — 10 kJ /mol, depending on the coordination
mode. To reach a suffident adsorption enthalpy for practical usage, the hydrogen molecule must be substantially polarized.
Ultimately, the ability of the metalated linker to polarize the hydrogen molecule is highly dependent on the geometry of the

metal ion coordination site where a strong electrostatic dipole or quadrupole moment is required.

B INTRODUCTION

Hydrogen (H,) gas is a promising candidate for future use as an
energy carrier for mobile applications such as vehicles and
aircrafts. Hydrogen has almost three times higher gravimetric
energy content than gasoline, and its combustion or utilization
in a fuel cell is a “zero emission” process that results in the
formation of water without emitting any compounds that
pollute the environment or disrupt the climate. Since H, is an
extremely volatile gas under standard conditions, the energy
available per unit volume (volumetric energy density) is too
low for practical application, requiring its storage at high
pressures or as a liquid at cryogenic temperatures on board a
vehicle. An effident method for the storage of H, is therefore a
necessary technology for its effective use as a fuel. The 2017
DoE target values for an onboard hydrogen storage system for
light-duty fuel cell vehicles are a gravimetric capacity of 5.5 wt
% (kg H,/kg) and a volumetric capadty of 4.0 vol % (kg H,/L)
at an operating temperature of —40 to 60 "C. To the best of
our knowledge, these targets have yet to be met by any known
material upon incorporation into a storage system.

w7 ACS Publications — ® 214 American Chemical Sodety

Metal—organic frameworks (MOFs) are a family of
compounds consisting of metal ions or dusters coordinated
to organic ligands (linkers), which form extended network
structures. These materials have attracted attention for their
potential use as gas-storage media:' MOF structures often have
sizable pores that can be filled with guest molecules, many of
which are adsorbed to the intemal surfaces. Moreover, the
MOF compaosition and structure can be modified and tuned for
many purpcrses,1 such as |:atalysis'1 and chemical separaticms.l"

A reversible mechanism for adsorption and release of H,
from its storage material is needed for any practical storage
application. In this respect, the weak physisorption of H, in
MOFs is advantageous, since H, can reversibly adsorb to pore
surfaces within the MOF and be easily released when needed.
However, the weak adsorption enthalpy (H_;) of H, to most
known MOFs poses a challenge. At ambient temperatures, an
adsorption enthalpy of —15 to —20 k] mol™' is needed for
optimum hydrogen storage—delivery cycles depending upon

Received: October 7, 2014
Published: MNovember 21, 2014

ddoiong/10.1021 a5 1013231 L Am. Chem. Soc 2014, 136, 1782717835



Direct Experimental Evidence of Binding Mechanism?

H, Physisorption

Polarization Dispersion
l ° t e
How could we most directly {} 8
determine the relative
contribution of these three
- J. Am. Chem. Soc. 136, 17827 (2014)
mechanisms? Tsivion, Long, and Head-Gordon

“More direct” implies less need
for theoretical modelling.



Typical Spectra for H, in MOFs at 30 K
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Binding Sites in MOF-5

J.L.C. Rowsell, E.C. Spencer, J. E. Spencer, J. Howard, G. Mclintyre, J. L. C.
Eckert, J. Howard, and O.M. Rowsell, and O. M. Yaghi, Chem. Commun.

Yaghi, Science, 309, 1350 (2005) 3, 278 (2006).



MOF-5 Temperature Dependence
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Concentration Dependence
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MOF-5 with H2 Molecules at Primar_y Site
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Stick Spectrum for Interacting ortho-H, Pairs

Absorbance (arb. units)

aaaaaaaaaaaaaa

uuuuuu
Occupied Occupied
CCCCCC

ccccc

| /
________
«

m=F1

4127 4128
Wavenumber (cm™)

4126 4129

4130



Ortho to Para Conversion with Time
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H, and D, Mixture
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CO, In Different Metal MOF-74

J. Phys. Chem. C 2015, 119, 5293-5300
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